Saturday, October 3, 2009

MOTOR

An electric motor is a device using electrical energy to produce mechanical energy, nearly always by the interaction of magnetic fields and current-carrying conductors. The reverse process, that of using mechanical energy to produce electrical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks. In principle, all electric motors can run as generators and vice versa, although that is not practical with all types in all applications.
As a convention the term electric engine is not used for electric motors, but instead refers to a railroad electric locomotive.
Electric motors are found in a myriad of applications such as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and computer disk drives, among many other applications. Electric motors may be operated by direct current from a battery in a portable device or motor vehicle, or from alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the thousands of kilowatts. Electric motors may be classified by the source of electric power, by their internal construction, and by application.
The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.


History and development

Electromagnetic experiment of Faraday, ca. 1821.[1]

The principle

The principle of conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821 and consisted of a free-hanging wire dipping into a pool of mercury. A permanent magnet was placed in the middle of the pool of mercury. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire[2]. This motor is often demonstrated in school physics classes, but brine (salt water) is sometimes used in place of the toxic mercury. This is the simplest form of a class of electric motors called homopolar motors. A later refinement is the Barlow's Wheel. These were demonstration devices only, unsuited to practical applications due to their primitive construction.[citation needed]
Jedlik's "lightning-magnetic self-rotor", 1827. (Museum of Applied Arts, Budapest.)
In 1827, Hungarian Ányos Jedlik started experimenting with electromagnetic rotating devices he called "lightning-magnetic self-rotors". He used them for instructive purposes in universities, and in 1828 demonstrated the first device which contained the three main components of practical direct current motors: the stator, rotor and commutator. Both the stationary and the revolving parts were electromagnetic, thus employing no permanent magnets.[3][4][5][6] [7][8] Again, the devices had no practical application.[citation needed]

The first electric motors

The first commutator-type direct current electric motor capable of turning machinery was invented by the British scientist William Sturgeon in 1832.[9] Following Sturgeon's work, a commutator-type direct-current electric motor made with the intention of commercial use was built by the American Thomas Davenport and patented in 1837. His motors ran at up to 600 revolutions per minute, and powered machine tools and a printing press.[10] Due to the high cost of the zinc electrodes required by primary battery power, the motors were commercially unsuccessful and Davenport went bankrupt. Several inventors followed Sturgeon in the development of DC motors but all encountered the same cost issues with primary battery power. No electricity distribution had been developed at the time. Like Sturgeon's motor, there was no practical commercial market for these motors.[citation needed]
In 1855 Jedlik built a device using similar principles to those used in his electromagnetic self-rotors that was capable of useful work.[11][12] He built a model electric motor-propelled vehicle that same year.[13] There is no evidence that this experimentation was communicated to the wider scientific world at that time, or that it influenced the development of electric motors in the following decades.[citation needed]
The modern DC motor was invented by accident in 1873, when Zénobe Gramme connected the dynamo he had invented to a second similar unit, driving it as a motor. The Gramme machine was the first electric motor that was successful in the industry.[citation needed]
In 1888 Nikola Tesla invented the first practicable AC motor and with it the polyphase power transmission system. Tesla continued his work on the AC motor in the years to follow at the Westinghouse company.[citation needed]
The development of electric motors of acceptable efficiency was delayed for several decades by failure to recognize the extreme importance of a relatively-small air gap between rotor and stator. Early motors, for some rotor positions, had comparatively huge air gaps which constituted a very-high-reluctance magnetic circuit. They produced far-lower torque than an equivalent amount of power would produce with efficient designs. The cause of the lack of understanding seems to be that early designs were based on familiarity of distant attraction between a magnet and a piece of ferromagnetic material, or between two electromagnets. Efficient designs, as this article describes, are based on a rotor with a comparatively small air gap, and flux patterns that create torque.[14]
Note that the armature bars are at some distance (unknown) from the field pole pieces when power is fed to one of the field magnets; the air gap is likely to be considerable. The text tells of the inefficiency of the design. (Electricity was created, as a practical matter, by consuming zinc in wet primary cells!)
In his workshops Froment had an electromotive engine of one-horse power. But, though an interesting application of the transformation of energy, these machines will never be practically applied on the large scale in manufactures, for the expense of the acids and the zinc which they use very far exceeds that of the coal in steam-engines of the same force. [...] motors worked by electricity, independently of any question as to the cost of construction, or of the cost of the acids, are at least sixty times as dear to work as steam-engines.
Although Gramme's design was comparatively much more efficient, apparently the Froment motor was still considered illustrative, years later. It is of some interest that the St. Louis motor, long used in classrooms to illustrate motor principles, is extremely inefficient for the same reason, as well as appearing nothing like a modern motor. Photo of a traditional form of the motor: [3] Note the prominent bar magnets, and the huge air gap at the ends opposite the rotor. Even modern versions still have big air gaps if the rotor poles are not aligned.
Application of electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using shaft, belts, compressed air or hydraulic pressure. Instead every machine could be equipped with its own electric motor, providing easy control at the point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle power from such tasks as handling grain or pumping water. Household uses of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors consume more than half of all electric energy produced.

Servo motor

A servomechanism, or servo is an automatic device that uses error-sensing feedback to correct the performance of a mechanism. The term correctly applies only to systems where the feedback or error-correction signals help control mechanical position or other parameters. For example, an automotive power window control is not a servomechanism, as there is no automatic feedback which controls position—the operator does this by observation. By contrast the car's cruise control uses closed loop feedback, which classifies it as a servomechanism.

Synchronous electric motor

A synchronous electric motor is an AC motor distinguished by a rotor spinning with coils passing magnets at the same rate as the alternating current and resulting magnetic field which drives it. Another way of saying this is that it has zero slip under usual operating conditions. Contrast this with an induction motor, which must slip in order to produce torque. A synchronous motor is like an induction motor except the rotor is excited by a DC field. Slip rings and brushes are used to conduct current to rotor. The rotor poles connect to each other and move at the same speed hence the name synchronous motor.

Induction motor

An induction motor (IM) is a type of asynchronous AC motor where power is supplied to the rotating device by means of electromagnetic induction. Another commonly used name is squirrel cage motor because the rotor bars with short circuit rings resemble a squirrel cage (hamster wheel). An electric motor converts electrical power to mechanical power in its rotor (rotating part). There are several ways to supply power to the rotor. In a DC motor this power is supplied to the armature directly from a DC source, while in an induction motor this power is induced in the rotating device. An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer and the rotor (rotating part) is the secondary side. Induction motors are widely used, especially polyphase induction motors, which are frequently used in industrial drives.

Electrostatic motor (capacitor motor)

An electrostatic motor or capacitor motor is a type of electric motor based on the attraction and repulsion of electric charge. Usually, electrostatic motors are the dual of conventional coil-based motors. They typically require a high voltage power supply, although very small motors employ lower voltages. Conventional electric motors instead employ magnetic attraction and repulsion, and require high current at low voltages. In the 1750s, the first electrostatic motors were developed by Benjamin Franklin and Andrew Gordon. Today the electrostatic motor finds frequent use in micro-mechanical (MEMS) systems where their drive voltages are below 100 volts, and where moving, charged plates are far easier to fabricate than coils and iron cores. Also, the molecular machinery which runs living cells is often based on linear and rotary electrostatic motors.

DC Motors

A DC motor is designed to run on DC electric power. Two examples of pure DC designs are Michael Faraday's homopolar motor (which is uncommon), and the ball bearing motor, which is (so far) a novelty. By far the most common DC motor types are the brushed and brushless types, which use internal and external commutation respectively to create an oscillating AC current from the DC source—so they are not purely DC machines in a strict sense.

Brushed DC motors

The classic DC motor design generates an oscillating current in a wound rotor, or armature, with a split ring commutator, and either a wound or permanent magnet stator. A rotor consists of one or more coils of wire wound around a core on a shaft; an electrical power source is connected to the rotor coil through the commutator and its brushes, causing current to flow in it, producing electromagnetism. The commutator causes the current in the coils to be switched as the rotor turns, keeping the magnetic poles of the rotor from ever fully aligning with the magnetic poles of the stator field, so that the rotor never stops (like a compass needle does) but rather keeps rotating indefinitely (as long as power is applied and is sufficient for the motor to overcome the shaft torque load and internal losses due to friction, etc.)
Many of the limitations of the classic commutator DC motor are due to the need for brushes to press against the commutator. This creates friction. At higher speeds, brushes have increasing difficulty in maintaining contact. Brushes may bounce off the irregularities in the commutator surface, creating sparks. (Sparks are also created inevitably by the brushes making and breaking circuits through the rotor coils as the brushes cross the insulating gaps between commutator sections. Depending on the commutator design, this may include the brushes shorting together adjacent sections—and hence coil ends—momentarily while crossing the gaps. Furthermore, the inductance of the rotor coils causes the voltage across each to rise when its circuit is opened, increasing the sparking of the brushes.) This sparking limits the maximum speed of the machine, as too-rapid sparking will overheat, erode, or even melt the commutator. The current density per unit area of the brushes, in combination with their resistivity, limits the output of the motor. The making and breaking of electric contact also causes electrical noise, and the sparks additionally cause RFI. Brushes eventually wear out and require replacement, and the commutator itself is subject to wear and maintenance (on larger motors) or replacement (on small motors). The commutator assembly on a large machine is a costly element, requiring precision assembly of many parts. On small motors, the commutator is usually permanently integrated into the rotor, so replacing it usually requires replacing the whole rotor.
Large brushes are desired for a larger brush contact area to maximize motor output, but small brushes are desired for low mass to maximize the speed at which the motor can run without the brushes excessively bouncing and sparking (comparable to the problem of "valve float" in internal combustion engines). (Small brushes are also desirable for lower cost.) Stiffer brush springs can also be used to make brushes of a given mass work at a higher speed, but at the cost of greater friction losses (lower efficiency) and accelerated brush and commutator wear. Therefore, DC motor brush design entails a trade-off between output power, speed, and efficiency/wear.
A: shunt
B: series
C: compound
There are four types of DC motor:
  1. DC series motor
  2. DC shunt motor
  3. DC compound motor - there are also two types:
    1. cumulative compound
    2. differentially compounded
  4. Permanent Magnet DC Motor

Brushless DC motors

Some of the problems of the brushed DC motor are eliminated in the brushless design. In this motor, the mechanical "rotating switch" or commutator/brushgear assembly is replaced by an external electronic switch synchronised to the rotor's position. Brushless motors are typically 85-90% efficient or more (higher efficiency for a brushless electric motor of up to 96.5% were reported by researchers at the Tokai University in Japan in 2009[16]), whereas DC motors with brushgear are typically 75-80% efficient.
Midway between ordinary DC motors and stepper motors lies the realm of the brushless DC motor. Built in a fashion very similar to stepper motors, these often use a permanent magnet external rotor, three phases of driving coils, one or more Hall effect sensors to sense the position of the rotor, and the associated drive electronics. The coils are activated, one phase after the other, by the drive electronics as cued by the signals from either Hall effect sensors or from the back EMF (electromotive force) of the undriven coils. In effect, they act as three-phase synchronous motors containing their own variable-frequency drive electronics. A specialized class of brushless DC motor controllers utilize EMF feedback through the main phase connections instead of Hall effect sensors to determine position and velocity. These motors are used extensively in electric radio-controlled vehicles. When configured with the magnets on the outside, these are referred to by modelists as outrunner motors.
Brushless DC motors are commonly used where precise speed control is necessary, as in computer disk drives or in video cassette recorders, the spindles within CD, CD-ROM (etc.) drives, and mechanisms within office products such as fans, laser printers and photocopiers. They have several advantages over conventional motors:
  • Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.
  • Without a commutator to wear out, the life of a DC brushless motor can be significantly longer compared to a DC motor using brushes and a commutator. Commutation also tends to cause a great deal of electrical and RF noise; without a commutator or brushes, a brushless motor may be used in electrically sensitive devices like audio equipment or computers.
  • The same Hall effect sensors that provide the commutation can also provide a convenient tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer signal can be used to derive a "fan OK" signal.
  • The motor can be easily synchronized to an internal or external clock, leading to precise speed control.
  • Brushless motors have no chance of sparking, unlike brushed motors, making them better suited to environments with volatile chemicals and fuels. Also, sparking generates ozone which can accumulate in poorly ventilated buildings risking harm to occupants' health.
  • Brushless motors are usually used in small equipment such as computers and are generally used to get rid of unwanted heat.
  • They are also very quiet motors which is an advantage if being used in equipment that is affected by vibrations.
Modern DC brushless motors range in power from a fraction of a watt to many kilowatts. Larger brushless motors up to about 100 kW rating are used in electric vehicles. They also find significant use in high-performance electric model aircraft.

Coreless or ironless DC motors

Nothing in the design of any of the motors described above requires that the iron (steel) portions of the rotor actually rotate; torque is exerted only on the windings of the electromagnets. Taking advantage of this fact is the coreless or ironless DC motor, a specialized form of a brush or brushless DC motor. Optimized for rapid acceleration, these motors have a rotor that is constructed without any iron core. The rotor can take the form of a winding-filled cylinder, or a self-supporting structure comprising only the magnet wire and the bonding material. The rotor can fit inside the stator magnets; a magnetically-soft stationary cylinder inside the rotor provides a return path for the stator magnetic flux. A second arrangement has the rotor winding basket surrounding the stator magnets. In that design, the rotor fits inside a magnetically-soft cylinder that can serve as the housing for the motor, and likewise provides a return path for the flux. A third design has the windings shaped as a disc (originally formed on a printed circuit board) running between arrays of high-flux magnets facing the rotor and arranged in a circle. This design is commonly known either as the printed motor or the pancake motor because of its extremely flat profile. The armature in a printed motor is made from punched copper sheets that are laminated together using advanced composites to form a rigid disc onto which a hub can be bonded.
The windings are typically stabilized by being impregnated with electrical epoxy potting systems. These are filled epoxies that have moderate mixed viscosity and a long gel time. They are highlighted by low shrinkage and low exotherm, and are typically UL 1446 recognized as a potting compound for use up to 180°C (Class H) (UL File No. E 210549).
Because the rotor is much lighter in weight (mass) than a conventional rotor formed from copper windings on steel laminations, the rotor can accelerate much more rapidly, often achieving a mechanical time constant under 1 ms. This is especially true if the windings use aluminum rather than the heavier copper. But because there is no metal mass in the rotor to act as a heat sink, even small coreless motors must often be cooled by forced air.
Another advantage of ironless DC motors is that there is no cogging (vibration caused by attraction between the iron and the magnets) and parasitic eddy currents cannot form in the iron. This can greatly improve efficiency, but variable-speed controllers must use a significantly higher switching rate (>150 kHz) or direct current because of the decreased electromagnetic induction.
These motors were commonly used to drive the capstan(s) of magnetic tape drives and are still widely used in high-performance servo-controlled systems, like radio-controlled vehicles/aircraft, humanoid robotic systems, industrial automation, medical devices, etc.
Related limited-travel actuators have no core and a bonded coil placed between the poles of high-flux thin permanent magnets. These are the fast head positioners for rigid-disk ("hard disk") drives.

Universal motors and series wound DC motors

A wound field DC motor with the field and armature windings connected in series is called either a "series-wound motor" or a "universal motor," because of its ability to operate on AC or DC power. The ability of to operate on AC or DC power is because the current in both the field winding and the armature (and hence the resultant magnetic fields) will alternate (reverse polarity) at the same time, and hence the mechanical force generated is always in the same direction. Usually, the use of the term "universal motor" indicates a motor that has been specifically designed for
The torque of a series-wound or universal motor declines slowly with speed. Although this can be advantageous for some applications, it also means that, unloaded, the motor may "run away" and speed up to the point of mechanical failure. However factors such as external load and internal mechanical resistance may adequately limit the speed.
Operating at normal power line frequencies, universal motors are typically used in low-power applications and motors exceeding one kilowatt (about 1.3 horsepower) are very rare. But universal motors also form the basis of the traditional railway traction motor in electric railways. In this application, to keep their electrical efficiency high, they were operated from very low frequency AC supplies, with 25 and 16.7 hertz (Hz) operation being common. Because they are universal motors, locomotives using this design were also commonly capable of operating from a third rail powered by DC.
An advantage of the universal motor is that AC supplies may be used on motors which have some characteristics more common in DC motors, specifically high starting torque and very compact design if high running speeds are used. The negative aspect is the maintenance and short life problems caused by the commutator. As a result such motors are usually used in AC devices such as food mixers and power tools which are used only intermittently, and often have high starting-torque demands. Continuous speed control of a universal motor running on AC is easily obtained by use of a thyristor circuit, while (imprecise) stepped speed control can be accomplished using multiple taps on the field coil. Household blenders that advertise many speeds frequently combine a field coil with several taps and a diode that can be inserted in series with the motor (causing the motor to run on half-wave rectified AC).
Universal motors generally run at high speeds, making them useful for appliances such as blenders, vacuum cleaners, and hair dryers where high RPM operation is desirable. They are also commonly used in portable power tools, such as drills, circular and jig saws, where the motor's characteristics work well. Many vacuum cleaner and weed trimmer motors exceed 10,000 RPM, while Dremel and other similar miniature grinders will often exceed 30,000 RPM.
Motor damage may occur due to overspeeding (running at an RPM in excess of design limits) if the unit is operated with no significant load. On larger motors, sudden loss of load is to be avoided, and the possibility of such an occurrence is incorporated into the motor's protection and control schemes. In some smaller applications, a fan blade attached to the shaft often acts as an artificial load to limit the motor speed to a safe value, as well as a means to circulate cooling airflow over the armature and field windings.
"Universal" or "Series-wound" motors generally operate better with DC current, but they have the ability to operate with AC current as well, making them very versatile for a broad range of applications. However, there is little to no means to control the motor's speed accurately. Unlike induction motors, the "goal" of this motor is to run a load at the highest speed possible, which has specific advantages for appliances such as vacuum cleaners and blenders and such. Many automotive starter motors are either series-wound or compound-wound motors because of the high starting torque.

AC motors

In 1882, Nikola Tesla invented the rotating magnetic field, and pioneered the use of a rotary field of force to operate machines. He exploited the principle to design a unique two-phase induction motor in 1883. In 1885, Galileo Ferraris independently researched the concept. In 1888, Ferraris published his research in a paper to the Royal Academy of Sciences in Turin.
Tesla had suggested that the commutators from a machine could be removed and the device could operate on a rotary field of force. Professor Poeschel, his teacher, stated that would be akin to building a perpetual motion machine.[17] Tesla would later attain U.S. Patent 0,416,194, Electric Motor (December 1889), which resembles the motor seen in many of Tesla's photos. This classic alternating current electro-magnetic motor was an induction motor.
Michail Osipovich Dolivo-Dobrovolsky later invented a three-phase "cage-rotor" in 1890. This type of motor is now used for the vast majority of commercial applications.

Components

A typical AC motor consists of two parts:
  • An outside stationary stator having coils supplied with AC current to produce a rotating magnetic field, and;
  • An inside rotor attached to the output shaft that is given a torque by the rotating field.

Torque motors

A torque motor (also known as a limited torque motor) is a specialized form of induction motor which is capable of operating indefinitely while stalled, that is, with the rotor blocked from turning, without incurring damage. In this mode of operation, the motor will apply a steady torque to the load (hence the name).
A common application of a torque motor would be the supply- and take-up reel motors in a tape drive. In this application, driven from a low voltage, the characteristics of these motors allow a relatively-constant light tension to be applied to the tape whether or not the capstan is feeding tape past the tape heads. Driven from a higher voltage, (and so delivering a higher torque), the torque motors can also achieve fast-forward and rewind operation without requiring any additional mechanics such as gears or clutches. In the computer gaming world, torque motors are used in force feedback steering wheels.
Another common application is the control of the throttle of an internal combustion engine in conjunction with an electronic governor. In this usage, the motor works against a return spring to move the throttle in accordance with the output of the governor. The latter monitors engine speed by counting electrical pulses from the ignition system or from a magnetic pickup [18] and, depending on the speed, makes small adjustments to the amount of current applied to the motor. If the engine starts to slow down relative to the desired speed, the current will be increased, the motor will develop more torque, pulling against the return spring and opening the throttle. Should the engine run too fast, the governor will reduce the current being applied to the motor, causing the return spring to pull back and close the throttle.

Slip ring

The slip ring is a component of the wound rotor motor as an induction machine (best evidenced by the construction of the common automotive alternator), where the rotor comprises a set of coils that are electrically terminated in slip rings. These are metal rings rigidly mounted on the rotor, and combined with brushes (as used with commutators), provide continuous unswitched connection to the rotor windings.
In the case of the wound-rotor induction motor, external impedances can be connected to the brushes. The stator is excited similarly to the standard squirrel cage motor. By changing the impedance connected to the rotor circuit, the speed/current and speed/torque curves can be altered.
(Slip rings are most-commonly used in automotive alternators as well as in synchro angular data-transmission devices, among other applications.)
The slip ring motor is used primarily to start a high inertia load or a load that requires a very high starting torque across the full speed range. By correctly selecting the resistors used in the secondary resistance or slip ring starter, the motor is able to produce maximum torque at a relatively low supply current from zero speed to full speed. This type of motor also offers controllable speed.
Motor speed can be changed because the torque curve of the motor is effectively modified by the amount of resistance connected to the rotor circuit. Increasing the value of resistance will move the speed of maximum torque down. If the resistance connected to the rotor is increased beyond the point where the maximum torque occurs at zero speed, the torque will be further reduced.
When used with a load that has a torque curve that increases with speed, the motor will operate at the speed where the torque developed by the motor is equal to the load torque. Reducing the load will cause the motor to speed up, and increasing the load will cause the motor to slow down until the load and motor torque are equal. Operated in this manner, the slip losses are dissipated in the secondary resistors and can be very significant. The speed regulation and net efficiency is also very poor.

Stepper motors

Closely related in design to three-phase AC synchronous motors are stepper motors, where an internal rotor containing permanent magnets or a magnetically-soft rotor with salient poles is controlled by a set of external magnets that are switched electronically. A stepper motor may also be thought of as a cross between a DC electric motor and a rotary solenoid. As each coil is energized in turn, the rotor aligns itself with the magnetic field produced by the energized field winding. Unlike a synchronous motor, in its application, the stepper motor may not rotate continuously; instead, it "steps" — starts and then quickly stops again — from one position to the next as field windings are energized and de-energized in sequence. Depending on the sequence, the rotor may turn forwards or backwards, and it may change direction, stop, speed up or slow down arbitrarily at any time.
Simple stepper motor drivers entirely energize or entirely de-energize the field windings, leading the rotor to "cog" to a limited number of positions; more sophisticated drivers can proportionally control the power to the field windings, allowing the rotors to position between the cog points and thereby rotate extremely smoothly. This mode of operation is often called microstepping. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.
Stepper motors can be rotated to a specific angle in discrete steps with ease, and hence stepper motors are used for read/write head positioning in computer floppy diskette drives. They were used for the same purpose in pre-gigabyte era computer disk drives, where the precision and speed they offered was adequate for the correct positioning of the read/write head of a hard disk drive. As drive density increased, the precision and speed limitations of stepper motors made them obsolete for hard drives—the precision limitation made them unusable, and the speed limitation made them uncompetitive—thus newer hard disk drives use voice coil-based head actuator systems. (The term "voice coil" in this connection is historic; it refers to the structure in a typical (cone type) loudspeaker. This structure was used for a while to position the heads. Modern drives have a pivoted coil mount; the coil swings back and forth, something like a blade of a rotating fan. Nevertheless, like a voice coil, modern actuator coil conductors (the magnet wire) move perpendicular to the magnetic lines of force.)
Stepper motors were and still are often used in computer printers, optical scanners, and digital photocopiers to move the optical scanning element, the print head carriage (of dot matrix and inkjet printers), and the platen. Likewise, many computer plotters (which since the early 1990s have been replaced with large-format inkjet and laser printers) used rotary stepper motors for pen and platen movement; the typical alternatives here were either linear stepper motors or servomotors with complex closed-loop control systems.
So-called quartz analog wristwatches contain the smallest commonplace stepping motors; they have one coil, draw very little power, and have a permanent-magnet rotor. The same kind of motor drives battery-powered quartz clocks. Some of these watches, such as chronographs, contain more than one stepping motor.
Stepper motors were upscaled to be used in electric vehicles under the term SRM (switched reluctance machine).

Linear motors

A linear motor is essentially an electric motor that has been "unrolled" so that, instead of producing a torque (rotation), it produces a straight-line force along its length by setting up a traveling electromagnetic field.
Linear motors are most commonly induction motors or stepper motors. You can find a linear motor in a maglev (Transrapid) train, where the train "flies" over the ground, and in many roller-coasters where the rapid motion of the motorless railcar is controlled by the rail. On a smaller scale, at least one letter-size (8.5" x 11") computer graphics X-Y pen plotter made by Hewlett-Packard (in the late 1970s to mid 1980's) used two linear stepper motors to move the pen along the two orthogonal axes.

Doubly-fed electric motor

Doubly-fed electric motors have two independent multiphase windings that actively participate in the energy conversion process with at least one of the winding sets electronically controlled for variable speed operation. Two is the most active multiphase winding sets possible without duplicating singly-fed or doubly-fed categories in the same package. As a result, doubly-fed electric motors are machines with an effective constant torque speed range that is twice synchronous speed for a given frequency of excitation. This is twice the constant torque speed range as singly-fed electric machines, which have only one active winding set.
A doubly-fed motor allows for a smaller electronic converter but the cost of the rotor winding and slip rings may offset the saving in the power electronics components. Difficulties with controlling speed near synchronous speed limit applications.[19]

Singly-fed electric motor

Singly-fed electric motors incorporate a single multiphase winding set that is connected to a power supply. Singly-fed electric machines may be either induction or synchronous. The active winding set can be electronically controlled. Induction machines develop starting torque at zero speed and can operate as standalone machines. Synchronous machines must have auxiliary means for startup, such as a starting induction squirrel-cage winding or an electronic controller. Singly-fed electric machines have an effective constant torque speed range up to synchronous speed for a given excitation frequency.
The induction (asynchronous) motors (i.e., squirrel cage rotor or wound rotor), synchronous motors (i.e., field-excited, permanent magnet or brushless DC motors, reluctance motors, etc.), which are discussed on this page, are examples of singly-fed motors. By far, singly-fed motors are the predominantly installed type of motors.

Nanotube nanomotor

Researchers at University of California, Berkeley, recently developed rotational bearings based upon multiwall carbon nanotubes. By attaching a gold plate (with dimensions of the order of 100 nm) to the outer shell of a suspended multiwall carbon nanotube (like nested carbon cylinders), they are able to electrostatically rotate the outer shell relative to the inner core. These bearings are very robust; devices have been oscillated thousands of times with no indication of wear. These nanoelectromechanical systems (NEMS) are the next step in miniaturization and may find their way into commercial applications in the future.
See also:

Efficiency

To calculate a motor's efficiency, the mechanical output power is divided by the electrical input power:
\eta = \frac{P_m}{P_e},
where η is energy conversion efficiency, Pe is electrical input power, and Pm is mechanical output power.
In simplest case Pe = VI, and Pm = Tω, where V is input voltage, I is input current, T is output torque, and ω is output angular frequency.

Implications

This means that efficiency is highest in the middle of the torque range, so an oversized motor runs with the highest efficiency. This means using a bigger motor than is necessary accounts for extra torque, and allows the motor to operate closest to no load, or peak operating conditions.

Torque capability of motor types

When optimally designed for a given active current (i.e., torque current), voltage, pole-pair number, excitation frequency (i.e., synchronous speed), and core flux density, all categories of electric motors or generators will exhibit virtually the same maximum continuous shaft torque (i.e., operating torque) within a given physical size of electromagnetic core. Some applications require bursts of torque beyond the maximum operating torque, such as short bursts of torque to accelerate an electric vehicle from standstill. Always limited by magnetic core saturation or safe operating temperature rise and voltage, the capacity for torque bursts beyond the maximum operating torque differs significantly between categories of electric motors or generators.
Note: Capacity for bursts of torque should not be confused with Field Weakening capability inherent in fully electromagnetic electric machines (Permanent Magnet (PM) electric machine are excluded). Field Weakening, which is not readily available with PM electric machines, allows an electric machine to operate beyond the designed frequency of excitation without electrical damage.
Electric machines without a transformer circuit topology, such as Field-Wound (i.e., electromagnet) or Permanent Magnet (PM) Synchronous electric machines cannot realize bursts of torque higher than the maximum designed torque without saturating the magnetic core and rendering any increase in current as useless. Furthermore, the permanent magnet assembly of PM synchronous electric machines can be irreparably damaged, if bursts of torque exceeding the maximum operating torque rating are attempted.
Electric machines with a transformer circuit topology, such as Induction (i.e., asynchronous) electric machines, Induction Doubly-Fed electric machines, and Induction or Synchronous Wound-Rotor Doubly-Fed (WRDF) electric machines, exhibit very high bursts of torque because the active current (i.e., Magneto-Motive-Force or the product of current and winding-turns) induced on either side of the transformer oppose each other and as a result, the active current contributes nothing to the transformer coupled magnetic core flux density, which would otherwise lead to core saturation.
Electric machines that rely on Induction or Asynchronous principles short-circuit one port of the transformer circuit and as a result, the reactive impedance of the transformer circuit becomes dominant as slip increases, which limits the magnitude of active (i.e., real) current. Still, bursts of torque that are two to three times higher than the maximum design torque are realizable.
The Synchronous WRDF electric machine is the only electric machine with a truly dual ported transformer circuit topology (i.e., both ports independently excited with no short-circuited port). The dual ported transformer circuit topology is known to be unstable and requires a multiphase slip-ring-brush assembly to propagate limited power to the rotor winding set. If a precision means were available to instantaneously control torque angle and slip for synchronous operation during motoring or generating while simultaneously providing brushless power to the rotor winding set (see Brushless wound-rotor doubly-fed electric machine), the active current of the Synchronous WRDF electric machine would be independent of the reactive impedance of the transformer circuit and bursts of torque significantly higher than the maximum operating torque and far beyond the practical capability of any other type of electric machine would be realizable. Torque bursts greater than eight times operating torque have been calculated.

GENERATOR

In electricity generation, an electrical generator is a device that converts mechanical energy to electrical energy, generally using electromagnetic induction. The reverse conversion of electrical energy into mechanical energy is done by a motor; motors and generators have many similarities. A generator forces electric charges to move through an external electrical circuit, but it does not create electricity or charge, which is already present in the wire of its windings. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air or any other source of mechanical energy.

Historic developments:-

Before the connection between magnetism and electricity was discovered, electrostatic generators were invented that used electrostatic principles. These generated very high voltages and low currents. They operated by using moving electrically charged belts, plates and disks to carry charge to a high potential electrode. The charge was generated using either of two mechanisms:
Because of their inefficiency and the difficulty of insulating machines producing very high voltages, electrostatic generators had low power ratings and were never used for generation of commercially-significant quantities of electric power. The Wimshurst machine and Van de Graaff generator are examples of these machines that have survived.
 

Jedlik's dynamo

In 1827, Hungarian Anyos Jedlik started experimenting with electromagnetic rotating devices which he called electromagnetic self-rotors. In the prototype of the single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. He formulated the concept of the dynamo at least 6 years before Siemens and Wheatstone but didn't patent it as he thought he wasn't the first to realize this. In essence the concept is that instead of permanent magnets, two electromagnets opposite to each other induce the magnetic field around the rotor. Jedlik's invention was decades ahead of its time


Faraday's disk

Faraday disk
In 1831-1832 Michael Faraday discovered the operating principle of electromagnetic generators. The principle, later called Faraday's law, is that a potential difference is generated between the ends of an electrical conductor that moves perpendicular to a magnetic field. He also built the first electromagnetic generator, called the 'Faraday disk', a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage.
This design was inefficient due to self-cancelling counterflows of current in regions not under the influence of the magnetic field. While current flow was induced directly underneath the magnet, the current would circulate backwards in regions outside the influence of the magnetic field. This counterflow limits the power output to the pickup wires, and induces waste heating of the copper disc. Later homopolar generators would solve this problem by using an array of magnets arranged around the disc perimeter to maintain a steady field effect in one current-flow direction.
Another disadvantage was that the output voltage was very low, due to the single current path through the magnetic flux. Experimenters found that using multiple turns of wire in a coil could produce higher more useful voltages. Since the output voltage is proportional to the number of turns, generators could be easily designed to produce any desired voltage by varying the number of turns. Wire windings became a basic feature of all subsequent generator designs.
However, recent advances (rare earth magnets) have made possible homo-polar motors with the magnets on the rotor, which should offer many advantages to older designs.

Dynamo

Dynamos are no longer used for power generation due to the size and complexity of the commutator needed for high power applications. This large belt-driven high-current dynamo produced 310 amperes at 7 volts, or 2,170 watts, when spinning at 1400 RPM.
Dynamo Electric Machine [End View, Partly Section] (U.S. Patent 284,110)

The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into a pulsing direct electric current through the use of a commutator. The first dynamo was built by Hippolyte Pixii in 1832.
Through a series of accidental discoveries, the dynamo became the source of many later inventions, including the DC electric motor, the AC alternator, the AC synchronous motor, and the rotary converter.
A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.
Large power generation dynamos are now rarely seen due to the now nearly universal use of alternating current for power distribution and solid state electronic AC to DC power conversion. But before the principles of AC were discovered, very large direct-current dynamos were the only means of power generation and distribution.

Other rotating electromagnetic generators

Without a commutator, the dynamo is an example of an alternator, which is a synchronous singly-fed generator. With an electromechanical commutator, the dynamo is a classical direct current (DC) generator. The alternator must always operate at a constant speed that is precisely synchronized to the electrical frequency of the power grid for non-destructive operation. The DC generator can operate at any speed within mechanical limits but always outputs a direct current waveform.
Other types of generators, such as the asynchronous or induction singly-fed generator, the doubly-fed generator, or the brushless wound-rotor doubly-fed generator, do not incorporate permanent magnets or field windings (i.e, electromagnets) that establish a constant magnetic field, and as a result, are seeing success in variable speed constant frequency applications, such as wind turbines or other renewable energy technologies.
The full output performance of any generator can be optimized with electronic control but only the doubly-fed generators or the brushless wound-rotor doubly-fed generator incorporate electronic control with power ratings that are substantially less than the power output of the generator under control, which by itself offer cost, reliability and efficiency benefits.

MHD generator

A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25MW demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980s, the MHD plant U 25 was in regular commercial operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time. [1] MHD generators operated as a topping cycle are currently (2007) less efficient than combined-cycle gas turbines

Terminology

Rotor from generator at Hoover Dam, United States
The two main parts of a generator or motor can be described in either mechanical or electrical terms[citation needed]:
Mechanical:
Electrical:
  • Armature: The power-producing component of an alternator, generator, dynamo or motor. In a generator, alternator, or dynamo the armature windings generate the electrical current. The armature can be on either the rotor or the stator.
  • Field: The magnetic field component of an alternator, generator, dynamo or motor. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator.
Because power transferred into the field circuit is much less than in the armature circuit, AC generators nearly always have the field winding on the rotor and the stator as the armature winding. Only a small amount of field current must be transferred to the moving rotor, using slip rings. Direct current machines necessarily have the commutator on the rotating shaft, so the armature winding is on the rotor of the machine.


Excitation

A small early 1900s 75 KVA direct-driven power station AC alternator, with a separate belt-driven exciter generator.
An electric generator or electric motor that uses field coils rather than permanent magnets will require a current flow to be present in the field coils for the device to be able to work. If the field coils are not powered, the rotor in a generator can spin without producing any usable electrical energy, while the rotor of a motor may not spin at all. Very large power station generators often utilize a separate smaller generator to excite the field coils of the larger.
In the event of a severe widespread power outage where islanding of power stations has occurred, the stations may need to perform a black start to excite the fields of their largest generators, in order to restore customer power service.

Equivalent circuit

Equivalent circuit of generator and load.
G = generator
VG=generator open-circuit voltage
RG=generator internal resistance
VL=generator on-load voltage
RL=load resistance
The equivalent circuit of a generator and load is shown in the diagram to the right. To determine the generator's VG and RG parameters, follow this procedure: -
  • Before starting the generator, measure the resistance across its terminals using an ohmmeter. This is its DC internal resistance RGDC.
  • Start the generator. Before connecting the load RL, measure the voltage across the generator's terminals. This is the open-circuit voltage VG.
  • Connect the load as shown in the diagram, and measure the voltage across it with the generator running. This is the on-load voltage VL.
  • Measure the load resistance RL, if you don't already know it.
  • Calculate the generator's AC internal resistance RGAC from the following formula:
R_{GAC} = {R_L} \left( {{{V_G}\over{V_L}}-1} \right)
Note 1: The AC internal resistance of the generator when running is generally slightly higher than its DC resistance when idle. The above procedure allows you to measure both values. For rough calculations, you can omit the measurement of RGAC and assume that RGAC and RGDC are equal.
Note 2: If the generator is an AC type, use an AC voltmeter for the voltage measurements.
The maximum power theorem states that the maximum power can be obtained from the generator by making the resistance of the load equal to that of the generator. This is inefficient since half the power is wasted in the generator's internal resistance; practical electric power generators operate with load resistance much higher than internal resistance, so the efficiency is greater.

Vehicle-mounted generators

Early motor vehicles until about the 1960s tended to use DC generators with electromechanical regulators. These have now been replaced by alternators with built-in rectifier circuits, which are less costly and lighter for equivalent output. Automotive alternators power the electrical systems on the vehicle and recharge the battery after starting. Rated output will typically be in the range 50-100 A at 12 V, depending on the designed electrical load within the vehicle. Some cars now have electrically-powered steering assistance and air conditioning, which places a high load on the electrical system. Large commercial vehicles are more likely to use 24 V to give sufficient power at the starter motor to turn over a large diesel engine. Vehicle alternators do not use permanent magnets and are typically only 50-60% efficient over a wide speed range.[2] Motorcycle alternators often use permanent magnet stators made with rare earth magnets, since they can be made smaller and lighter than other types. See also hybrid vehicle.
Some of the smallest generators commonly found power bicycle lights. These tend to be 0.5 ampere, permanent-magnet alternators supplying 3-6 W at 6 V or 12 V. Being powered by the rider, efficiency is at a premium, so these may incorporate rare-earth magnets and are designed and manufactured with great precision. Nevertheless, the maximum efficiency is only around 80% for the best of these generators - 60% is more typical - due in part to the rolling friction at the tire-generator interface from poor alignment, the small size of the generator, bearing losses and cheap design.
Sailing yachts may use a water or wind powered generator to trickle-charge the batteries. A small propeller, wind turbine or impeller is connected to a low-power alternator and rectifier to supply currents of up to 12 A at typical cruising speeds

Engine-generator

An engine-generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of self-contained equipment. The engines used are usually piston engines, but gas turbines can also be used. Many different versions are available - ranging from very small portable petrol powered sets to large turbine installations

Human powered electrical generators

A generator can also be driven by human muscle power (for instance, in field radio station equipment).
Human powered direct current generators are commercially available, and have been the project of some DIY enthusiasts. Typically operated by means of pedal power, a converted bicycle trainer, or a foot pump, such generators can be practically used to charge batteries, and in some cases are designed with an integral inverter. The average adult could generate about 125-200 watts on a pedal powered generator. Portable radio receivers with a crank are made to reduce battery purchase requirements, see clockwork radio

cable

A power cable is an assembly of two or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Flexible power cables are used for portable devices, mobile tools and machinery.

History:-

Early telegraph systems used the first forms of electrical cabling, transmitting small amounts of power. Gutta-percha insulation used on the first Submarine cables was unsuitable for building wiring use since it deteriorated rapidly when exposed to air.




The first power distribution system developed by Thomas Edison in 1882 in New York City used copper rods, wrapped in jute and placed in rigid pipes filled with a bituminous compound.

Although vulcanized rubber had been patented by Charles Goodyear in 1844, it was not applied to cable insulation until the 1880s, when it was used for lighting circuits.

 Rubber-insulated cable was used for 11,000 volt circuits in 1897 installed for the Niagara Falls power project. Oil-impregnated paper-insulated high voltage cables were commercially practical by 1895. During World War II several varieties of synthetic rubber and polyethylene insulation were applied to cables.

Construction:-


Modern power cables come in a variety of sizes, materials, and types, each particularly adapted to its uses. Large single insulated conductors are also sometimes called power cables in the industry.




Cables consist of three major components: conductors, insulation, protective jacket. The makeup of individual cables varies according to application. The construction and material are determined by three main factors:



Working voltage, determining the thickness of the insulation;

Current-carrying capacity, determining the cross-sectional size;

Environmental conditions such as temperature, water, chemical or sunlight exposure, and mechanical impact, determining the form and composition of the outer cable jacket.

Cables for direct burial or for exposed installations may also include metal armor in the form of wires spiralled around the cable, or a corrugated tape wrapped around it. The armor may be made of steel or aluminum, and although connected to earth ground is not intended to carry current during normal operation.



Power cables use stranded copper or aluminum conductors, although small power cables may use solid conductors. The cable may include uninsulated conductors used for the circuit neutral or for ground (earth) connection.



The overall assembly may be round or flat. Non-conducting filler strands may be added to the assembly to maintain its shape. Special purpose power cables for overhead or vertical use may have additional elements such as steel or Kevlar structural supports.



For circuits operating at or above 2,000 volts between conductors, a conductive shield may surround each insulated conductor. This equalizes electrical stress on the cable insulation. This technique was patented by Martin Hochstadter in 1916;

 the shield is sometimes called a Hochstadter shield. The individual conductor shields of a cable are connected to earth ground at the ends of the cable, and at locations along the length if voltage rise during faults would be dangerous.



Some power cables for outdoor overhead use may have no overall sheath. Other cables may have a plastic or metal sheath enclosing all the conductors. The materials for the sheath will be selected for resistance to water, oil, sunlight, underground conditions, chemical vapors, impact, or high temperatures. In nuclear industry applications the cable may have special requirements for ionizing radiation resistance. Cable materials may be specified not to produce large amounts of smoke if burned. Cables intended for underground use or direct burial in earth will have heavy plastic or metal, most often lead sheaths, or may require special direct-buried construction. When cables must run where exposed to mechanical impact damage, they may protected with flexible steel tape or wire armor, which may also be covered by a water resistant jacket.



Cables for power distribution of 8kV or higher may be insulated with oil and paper, and are run in a rigid steel pipe, semi-rigid aluminum or lead sheath. The oil may be kept under pressure to prevent formation of voids that would allow partial discharges within the cable insulation. Newer cables use polymers or polyethylene, including (XLPE) for insulation.



Most multiconductor cables today have a bare or insulated grounding or bonding wire which is for connection to earth ground. The grounding conductor connectes equipment enclosures to ground for protection from electric shock.



Electrical power cables are often installed in raceways, including electrical conduit and cable trays, which may contain one or more conductors.



A hybrid cable can include conductors for control signals or may also include optical fibers for data

Thursday, October 1, 2009

Electricity generation

Electricity generation is the process of creating electricity from other forms of energy.
The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet.
For electric utilities, it is the first process in the delivery of electricity to consumers. The other processes, electric power transmission, electricity distribution, and electrical power storage and recovery using pumped storage methods are normally carried out by the electrical power industry.
Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by chemical combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. There are many other technologies that can be and are used to generate electricity such as solar photovoltaics and geothermal power

History:-Centralised power generation became possible when it was recognized that alternating current power lines can transport electricity at very low costs across great distances by taking advantage of the ability to raise and lower the voltage using power transformers.
Electricity has been generated at central stations since 1881. The first power plants were run on water power or coal, and today we rely mainly on coal, nuclear, natural gas, hydroelectric, and petroleum with a small amount from solar energy, tidal harnesses, wind generators, and geothermal sources.


Methods of generating electricity:-

 There are seven fundamental methods of directly transforming other forms of energy into electrical energy:
Static electricity was the first form discovered and investigated, and the electrostatic generator is still used even in modern devices such as the Van de Graaff generator and MHD generators. Electrons are mechanically separated and transported to increase their electric potential.
Almost all commercial electrical generation is done using electromagnetic induction, in which mechanical energy forces an electrical generator to rotate. There are many different methods of developing the mechanical energy, including heat engines, hydro, wind and tidal power.
The direct conversion of nuclear energy to electricity by beta decay is used only on a small scale. In a full-size nuclear power plant, the heat of a nuclear reaction is used to run a heat engine. This drives a generator, which converts mechanical energy into electricity by magnetic induction.
Most electric generation is driven by heat engines. The combustion of fossil fuels supplies most of the heat to these engines, with a significant fraction from nuclear fission and some from renewable sources. The modern steam turbine invented by Sir Charles Parsons in 1884 - today generates about 80 percent of the electric power in the world using a variety of heat sources.



turbines:-

All turbines are driven by a fluid acting as an intermediate energy carrier. Many of the heat engines just mentioned are turbines. Other types of turbines can be driven by wind or falling water.
Sources includes:
  • Steam - Water is boiled by: 
    • nuclear fission,
    • the burning of fossil fuels (coal, natural gas, or petroleum). In hot gas (gas turbine), turbines are driven directly by gases produced by the combustion of natural gas or oil. Combined cycle gas turbine plants are driven by both steam and natural gas. They generate power by burning natural gas in a gas turbine and use residual heat to generate additional electricity from steam. These plants offer efficiencies of up to 60%.
    • Renewables. The steam generated by:
      • Biomass
      • The sun as the heat source: solar parabolic troughs and solar power towers concentrate sunlight to heat a heat transfer fluid, which is then used to produce steam.
      • Geothermal power. Either steam under pressure emerges from the ground and drives a turbine or hot water evaporates a low boiling liquid to create vapour to drive a turbine.
  • Other renewable sources:
    • Water (hydroelectric) - Turbine blades are acted upon by flowing water, produced by hydroelectric dams or tidal forces.
    • Wind - Most wind turbines generate electricity from naturally occurring wind. Solar updraft towers use wind that is artificially produced inside the chimney by heating it with sunlight, and are more properly seen as forms of solar thermal energy

Electric potential energy

Electric potential energy (also known as "electrostatic potential energy") is a potential energy associated with the conservative Coulomb forces within a defined system of point charges. The term "electrostatic potential energy" is preferred here because it seems less likely to be misunderstood. The reference zero is usually taken to be a state in which the individual point charges are very well separated ("are at infinite separation") and are at rest. The electrostatic potential energy of the system (UE), relative to this zero, is equal to the total work W that must be done by a hypothetical external agent in order to bring the charges slowly, one by one, from infinite separation to the desired system configuration:
U_{\mathrm{E}} = \; W \;.
In this process the external agent is deemed to provide or absorb any relevant work, and the point charge being slowly moved gains no kinetic energy.
Sometimes people refer to the potential energy of a charge in an electrostatic field. This actually refers to the potential energy of the system containing the charge and the other charges that created the electrostatic field.
To calculate the work required to bring a point charge into the vicinity of other (stationary) point charges, it is sufficient to know only (a) the total field generated by the other charges and (b) the charge of the point charge being moved. The field due to the charge being moved and the values of the other charges do not need to be known. Nonetheless, in many circumstances it is mathematically easier to add up all the pairwise potential energies (as below).
It is important to understand that electrostatics is a 18th-19th-century theory of hypothetical entities called "point charges". Electrostatics is categorically not a complete theory of the charged physical particles that make up the physical world, and are subject to the Heisenberg uncertainty principle and other laws of quantum mechanics.

electric current

Electric current can mean, depending on the context, a flow of electric charge  or the rate of flow of electric charge . The electric charge that flows is carried by, for example, mobile electrons in a conductor, ions in an electrolyte or both in a plasma.
The SI unit for rate of flow of electric charge is the ampere. Electric current is measured using an ammeter

electric flux

In electromagnetism, electric flux is the flux of the electric field. Electric flux is proportional to the number of electric field lines going through a virtual surface. The electric flux d\Phi_E\, through a small area d\mathbf{A} is given by
d\Phi_E = \mathbf{E} \cdot d\mathbf{A}
(the electric field, E, multiplied by the component of area perpendicular to the field). The electric flux over a surface S is therefore given by the surface integral:
\Phi_E = \int_S \mathbf{E} \cdot d\mathbf{A}
where E is the electric field and dA is a differential area on the closed surface S with an outward facing surface normal defining its direction.
For a closed Gaussian surface, electric flux is given by:
\Phi_E = \oint_S \mathbf{E} \cdot d\mathbf{A} = \frac{Q_S}{\epsilon_0}
where QS is the charge enclosed by the surface (including both free and bound charge), and ε0 is the electric constant. This relation is known as Gauss' law for electric field in its integral form and it is one of the four Maxwell's equations.
Electrical flux has SI units of volt metres (V m), or, equivalently, newton metres squared per coulomb (N m2 C−1). The SI base units of the electric field are kg•m3•s-3•A-1.